## TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf
Wolfgang Karl Härdle
Andrija Mihoci


Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin

http://lvb.wiwi.hu-berlin.de/ http://case.hu-berlin.de http://irtg1792.hu-berlin.de


## Motivation



TERES - Tail Event Risk Expected Shortfall $\lambda$

## Risk Management

$\square$ Regulation, Basel II and III
$\square$ Quantiles $\left(q_{\alpha}\right), V a R_{\alpha}$ - not coherent, level $\alpha$
$\square$ Small sample size

## - Coherence

Motivation ————1-3

## Quantiles and Tail Risk



Figure 1: Discrete distribution of returns, $q_{0.05}$ remains unchanged if tail structure changes

TERES - Tail Event Risk Expected Shortfall

## Coherent Tail Measuring

$\square$ Expectiles

- Not co-monotonic additive
- Challenges in risk aggregation
$\square$ Expected Shortfall (ES)
- Small sample size
- Expectiles connect ES and VaR


## Objectives

(i) Expected Shortfall (ES)

- Expectiles, Quantiles
- TERES
(ii) Estimating Expected Shortfall
- Distributional robustness, Huber (1964)
- Lengthening the distribution tails


## Example

## Expected Shortfall

An investor has a long position in Cisco Inc. (CSCO)
Calculate $E S_{0.01}$ assuming time stationarity
Distribution of de-GARCHed returns
(a) Normal
(b) Laplace

## Example



Figure 2: Standardized returns of Cisco Inc. (CSCO)

## Example

CSCO


Figure 3: Standardized returns of Cisco Inc. (CSCO),
(a) Normal $E S_{0.01}$ (solid)

TERES - Tail Event Risk Expected Shortfall

## Example

csco


Figure 4: Standardized returns of Cisco Inc. (CSCO),
(b) Laplace $E S_{0.01}$ (dashed)

TERES - Tail Event Risk Expected Shortfall

## Outline

1. Motivation $\checkmark$
2. Expected Shortfall (ES)
3. Distributional Robustness
4. Empirical Results
5. Conclusions

## Value at Risk

$\square$ Standardized returns $Y_{i}, i=1, \ldots, n$

- Definitions
$\square$ Quantile

$$
\begin{aligned}
q_{\alpha} & =F^{-1}(\alpha), \quad \alpha \in[0,1] \\
& =\arg \min _{\theta} \mathrm{E} \rho_{\alpha}\left(Y_{i}-\theta\right) \\
\rho_{\alpha}^{q}(u) & =|\alpha-\mathbf{I}\{u<0\}||u|
\end{aligned}
$$

## Value at Risk



Figure 5: Quantile loss function $\rho_{\alpha}^{q}$.
Solid (dashed) lines depict $\alpha=0.75(\alpha=0.50)$
Q LQRcheck

## Expected Shortfall

$\square$ Expected shortfall

$$
E S_{\alpha}=\mathrm{E}\left[Y \mid Y<q_{\alpha}\right]
$$

$\square$ Expectile

$$
\begin{aligned}
e_{\alpha} & =\arg \min _{\theta}^{\mathrm{E}} \rho_{\alpha}\left(Y_{i}-\theta\right) \\
\rho_{\alpha}^{e}(u)=\rho_{\alpha}(u) & =|\alpha-\mathbf{I}\{u<0\} \| u|^{2}
\end{aligned}
$$

- M-Quantiles


## Expectiles



Figure 6: Expectile and quantile loss functions $\rho_{\alpha}$ and $\rho_{\alpha}^{q}$. Solid (dashed) lines depict $\alpha=0.75(\alpha=0.50)$

Q LQRcheck

## Expected Shortfall and Expectiles

$\square$ Expectiles

- Level $\alpha, e_{\alpha}$
- Level $\tau, e_{\tau}=q_{\alpha}, F\left(q_{\alpha}\right)=F\left(e_{\tau}\right)=\alpha$
$\square$ Taylor (2008)

$$
E S_{\alpha}=e_{\tau}+\frac{e_{\tau}-\mathrm{E}[Y]}{1-2 \tau} \frac{\tau}{\alpha}=e_{\tau}+\frac{\left(e_{\tau}-\mathrm{E}[Y]\right) \tau}{(1-2 \tau) F\left(e_{\tau}\right)}
$$

## Expectiles and Quantiles

$\square$ Jones (1993), Guo and Härdle (2011)

$$
\begin{aligned}
\tau(\alpha) & =\frac{L P M_{Y}\left(q_{\alpha}\right)-q_{\alpha} \alpha}{2\left\{L P M_{Y}\left(q_{\alpha}\right)-q_{\alpha} \alpha\right\}+q_{\alpha}-E[Y]} \\
\operatorname{LPM_{Y}(u)} & =\int_{-\infty}^{u} y f(y) d y
\end{aligned}
$$

## - Proofs

Example: $\operatorname{LPM_{Y}}\left(q_{\alpha}\right)=-\varphi\left(q_{\alpha}\right)$ for $N(0,1)$

## Distributional Robustness

$\square$ Huber (1964), mixture distribution

$$
F_{\delta}=(1-\delta) \mathrm{N}(0,1)+\delta H
$$

- $H$ is an unknown symmetric distribution Example: standard Laplace distribution
- $\delta$-Neighborhood


## Tail Event Risk

Figure 7: $\tau(\alpha)$ for $F_{\delta}$

- Re-scaled results

TERES - Tail Event Risk Expected Shortfall

## Expected Shortfall



Figure 8: $E S_{0.1}, E S_{0.05}$ and $E S_{0.01}$ in a $\delta$-neighborhood

## Data

$\square$ Datastream: Cisco Inc. (CSCO)
$\square$ Span: 20070121-20140218 (1748 trading days)
$\square$ Standardized daily returns

Data


Figure 9: Standardized returns of Cisco Inc. (CSCO)

## Expected Shortfall

$\square$ Risk level $\alpha: 0.01,0.05$ and 0.10
$\square$ Sample quantiles $\widehat{q}_{\alpha}$ : -2.62, -1.43 and -1.03
$\square$ Contamination level
$\delta \in\{0,0.001,0.002,0.005,0.01,0.02,0.05,0.10,0.15,0.25,0.5,1\}$

Scaled results

TERES - Tail Event Risk Expected Shortfall

## Expected Shortfall

| $\delta$ | $E S_{0.10}$ | $\delta$ | $E S_{0.10}$ |
| :---: | :---: | :---: | :---: |
| 0.0 | -1.41 | 0.05 | -1.43 |
| 0.001 | -1.41 | 0.10 | -1.45 |
| 0.002 | -1.41 | 0.15 | -1.48 |
| 0.005 | -1.41 | 0.25 | -1.52 |
| 0.01 | -1.41 | 0.50 | -1.60 |
| 0.02 | -1.42 | 1.00 | -1.67 |

Table 1: ES for Cisco Inc. (CSCO) at $\alpha=0.10$

## Expected Shortfall

| $\delta$ | $E S_{0.05}$ | $\delta$ | $E S_{0.05}$ |
| :---: | :---: | :---: | :---: |
| 0.0 | -1.79 | 0.05 | -1.83 |
| 0.001 | -1.79 | 0.10 | -1.87 |
| 0.002 | -1.79 | 0.15 | -1.90 |
| 0.005 | -1.79 | 0.25 | -1.96 |
| 0.01 | -1.80 | 0.50 | -2.04 |
| 0.02 | -1.81 | 1.00 | -2.05 |

Table 2: ES for Cisco Inc. (CSCO) at $\alpha=0.05$

## Expected Shortfall

| $\delta$ | $E S_{0.01}$ | $\delta$ | $E S_{0.01}$ |
| :---: | :---: | :---: | :---: |
| 0.0 | -3.00 | 0.05 | -3.14 |
| 0.001 | -3.01 | 0.10 | -3.26 |
| 0.002 | -3.01 | 0.15 | -3.34 |
| 0.005 | -3.02 | 0.25 | -3.43 |
| 0.01 | -3.03 | 0.50 | -3.41 |
| 0.02 | -3.07 | 1.00 | -3.29 |

Table 3: ES for Cisco Inc. (CSCO) at $\alpha=0.01$

## Conclusions

(i) Expected Shortfall (ES)

- M-Quantiles applied successfully to estimate ES
- Interaction between $\alpha$ and $\tau$ illustrated
(ii) Estimating Expected Shortfall
- Distributional robustness: $\delta$-neighborhood
- TERES: Cisco Inc. (CSCO) - $E S_{0.01}, E S_{0.05}$ and $E S_{0.10}$


## TERES - Tail Event Risk Expected Shortfall

Philipp Gschöpf
Wolfgang Karl Härdle
Andrija Mihoci


Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de/
http://case.hu-berlin.de

http://irtg1792.hu-berlin.de


## References

Bellini, F. , Klar, B., Muller, A. and Gianin, E. R.
Generalized quantiles as risk measures
Insurance: Mathematics and Economics 54, 41-48, 2014, ISSN:
0167-6687
E. E. Guo M. and Härdle, W. K.

Simultaneous Confidence Band for Expectile Function
Advances in Statistical Analysis, 2011
DOI: 10.1007/s10182-011-0182-1

TERES - Tail Event Risk Expected Shortfall

Breckling, J. and Chambers, R. M-quantiles
Biometrica 75(4): 761-771, 1988
DOI: 10.1093/biomet/75.4.761
Huber, P.J.
Robust Estimation of a Location Parameter
The Annals of Mathematical Statistics 35(1): 73-101, 1964
DOI: 10.1214/aoms/1177703732
Q Huber, P.J. and Ronchetti, E.M.
Robust Statistics
Second Edition, 2009, ISBN: 978-0-470-12990-6

TERES - Tail Event Risk Expected Shortfall

固 Jones, M.C.
Expectiles and M-quantiles are quantiles Statistics \& Probability letters 20(2): 149-153, 1993, DOI: http://dx.doi.org/10.1016/0167-7152(94)90031-0
围 Koenker, R.
When are expectiles percentiles?
Economic Theory 9(3): 526-527, 1993
DOI:http://dx.doi.org/10.1017/S0266466600007921
Newey, W. K., Powell J.L.
Asymmetric Least Squares Estimation and Testing.
Econometrica 55(4): 819-847, 1987 DOI: 10.2307/1911031

TERES - Tail Event Risk Expected Shortfall

目 Taylor，J．W
Estimating value at risk and expected shortfall using expectiles Journal of Financial Econometrics（6），2， 2008

埥 Yao，Q．and Tong，H．
Asymmetric least squares regression estimation：A nonparametric approach Journal of Nonparametric Statistics（6），2－3， 1996

怅 Yee，T．W．
The VGAM Package for Categorical Data Analysis
R reference manual
http：／／127．0．0．1：16800／library／VGAM／doc／categoricalVGAM．pdf

TERES－Tail Event Risk Expected Shortfall

## Definitions

$\square$ Log-return $r_{i}$ of a portfolio, $i=1, \ldots, n$
$\checkmark$ Standardized returns with cdf $F$ and $\operatorname{pdf} f$

$$
Y_{i}=\frac{r_{i}-\mathrm{E}\left[r_{i}\right]}{\sigma_{i}}
$$

```
Back
```


## Coherent Risk Measures

$\square$ Let $\rho(Y)$ be a risk measure
$\square$ Subadditivity, $\rho\left(<Y_{1}+Y_{2}\right) \leq \rho\left(Y_{1}\right)+\rho\left(Y_{2}\right)$
$\square$ Translation invariance, $\rho(Y+c)=\rho(Y)$ for constant $c$
$\square$ Monotonicity, $\rho\left(Y_{1}\right)>\rho\left(Y_{2}\right) \quad \forall Y_{1}<Y_{2}$
$\square$ Positive homogeneity $\rho(k Y)=k \rho(Y) \quad \forall k>0$

## Subadditivity

$\square \rho\left(Y_{1}+Y_{2}\right) \leq \rho\left(Y_{1}\right)+\rho\left(Y_{2}\right)$
$\square$ Diversification never increases risk
$\square$ Quantiles are not subadditive
$\square$ Expected shortfall is subadditive, Delbaen (1998)

The expectile is defined as

$$
\begin{aligned}
\widehat{\theta} & =\arg \min _{\theta} \sum_{i=1}^{n} \rho\left(Y_{i}-\theta\right) \\
\rho(u) & =|\tau-\mathbf{I}\{u<0\}| u^{2}
\end{aligned}
$$

Or more generally using

$$
\widehat{\theta}=\arg \min _{\theta} \int \rho(Y-\theta)
$$

$\square$ Quadratic convex problem, F.O.C.

$$
(1-\tau) \int_{-\infty}^{s}(y-s) f(y) d y+\tau \int_{s}^{\infty}(y-s) f(y) d y=0
$$

$$
\begin{gathered}
(1-\tau) \int_{-\infty}^{e_{\tau}}\left(y-e_{\tau}\right) f(y) d y+(1-\tau) \int_{e_{\tau}}^{\infty}\left(y-e_{\tau}\right) f(y) d y \\
=(-\tau) \int_{e_{\tau}}^{\infty}\left(y-e_{\tau}\right) f(y) d y+(1-\tau) \int_{e_{\tau}}^{\infty}\left(y-e_{\tau}\right) f(y) d y \\
(1-\tau)\left\{\mathrm{E}(Y)-e_{\tau}\right\}=(1-2 \tau) \int_{e_{\tau}}^{\infty}\left(y-e_{\tau}\right) f(y) d y \\
e_{\tau}-\mathrm{E}(Y)=\frac{(2 \tau-1)}{1-\tau} \int_{e_{\tau}}^{\infty}\left(y-e_{\tau}\right) f(y) d y
\end{gathered}
$$

This result is equal to (2.7) in Newey and Powell (1987)

This is equal to, Taylor (2008)

$$
\begin{aligned}
e_{\tau}-\mathrm{E}[Y] & =\frac{1-2 \tau}{\tau} \mathrm{E}\left[\left(Y-e_{\tau}\right) \mathbf{I}\left\{Y>e_{\tau}\right\}\right] \\
\mathrm{E}\left[Y \mid Y>e_{\tau}\right] & =e_{\tau}+\frac{\tau\left(e_{\tau}-\mathrm{E}[Y]\right)}{(1-2 \tau) F\left(e_{\tau}\right)} \\
\mathrm{E}\left[Y \mid Y>q_{\alpha}\right] & =e_{\tau}+\frac{\left(e_{\tau}-\mathrm{E}[Y]\right) \tau}{(1-2 \tau) \alpha} \\
& =\mathrm{ES}\left(e_{\tau}, \tau \mid \alpha\right)
\end{aligned}
$$

## M-Quantiles

$\square$ Breckling and Chambers (1988), M-Quantiles

$$
\begin{aligned}
\theta^{(M)} & =\arg \min _{\theta} \mathrm{E} \rho_{\alpha}\left(Y_{i}-\theta\right) \\
\rho_{\alpha}(u) & =|\alpha-\mathbf{I}\{u<0\} \| u|^{\gamma}
\end{aligned}
$$

$\bullet$ Quantile $q_{\alpha}, \gamma=1$; Expectile $e_{\alpha}, \gamma=2$

```
Back
```


## M-Quantiles



Figure 10: Expectile $(\gamma=2)$ and quantile $(\gamma=1)$ loss functions $\rho_{\alpha}(u)$. Solid (dashed) lines depict $\alpha=0.75(\alpha=0.50)$

Q LQRcheck

## Generalized Error Distribution

$\square$ Let $\kappa>0$ and $g(x)$ be a symmetric distribution
$\square$ An asymmetric distribution $f(x)$ can be obtained as:

$$
f(x)=\frac{2 \kappa}{1+\kappa^{2}}\left\{\begin{array}{cl}
g(x \kappa) & , 0 \leq x  \tag{1}\\
g\left(\frac{x}{\kappa}\right) & , \text { else }
\end{array}\right.
$$

$\square$ The Generalized Error Distribution (GED, Exponential Power distr.) is defined as

$$
\begin{equation*}
g(x \mid \gamma, \sigma, \theta)=\frac{\gamma}{2 \sigma \Gamma\left(\frac{1}{\gamma}\right)} \exp \left\{-\left|\frac{x-\theta}{\sigma}\right|^{\gamma}\right\} \tag{2}
\end{equation*}
$$

Back

Combining (1) and (2) yields a skew GED:
$f(x \mid \gamma, \kappa, \sigma, \theta)=\frac{\gamma}{2 \sigma \Gamma\left(\frac{1}{\gamma}\right)} \frac{\kappa}{1+\kappa^{2}} \exp \left\{-\frac{\kappa^{\gamma}}{\sigma^{\gamma}}|x-\theta|_{+}^{\gamma}-\frac{1}{\kappa^{\gamma} \sigma^{\gamma}}|x-\theta|_{-}^{\gamma}\right\}$
$\square$ Parameter

- $\gamma$ Shape, $\gamma=1$ Laplace, $\gamma=2$ Normal
- $\kappa$ Skewness, $\kappa=1$ is symmetric
- $\sigma$ Variance
- $\theta$ Mean

Back
$\square$ Part of $-\ln \{f(\cdot)\}$ that depends on $x$

$$
\frac{\kappa^{\gamma}}{2 \sigma^{\gamma}}|x-\theta|^{\gamma} \mathbf{I}\{x-\theta \leq 0\}+\frac{1}{2 \kappa^{\gamma} \sigma^{\gamma}}|x-\theta|^{\gamma} \mathbf{I}\{x-\theta<0\}
$$

$\square$ M-quantile loss function

$$
\begin{aligned}
\rho(x-\theta) & =|\tau-\mathbf{I}\{x-\theta<0\}||x-\theta|^{\gamma} \\
& =\tau|x-\theta|^{\gamma} \mathbf{I}\{x-\theta \leq 0\}+(1-\tau)|x-\theta|^{\gamma} \mathbf{I}\{x-\theta<0\}
\end{aligned}
$$

$\square$ M-Quantile-GED relation: $\tau=\frac{\kappa^{\gamma}}{2 \sigma^{\gamma}}$

## - Back

F.O.C. of M-Quantiles:

$$
0=(1-\tau) \int_{-\infty}^{s}(y-s) f(y) d y+\tau \int_{s}^{\infty}(y-s) f(y) d y
$$

Reformulation yields

$$
\begin{aligned}
& \tau\left(e_{\tau}-2 \int_{-\infty}^{e_{\tau}} e_{\tau} f(y) d y\right)+\int_{-\infty}^{e_{\tau}} e_{\tau} f(y) d y \\
= & \tau\left(\int_{-\infty}^{\infty} y f(y) d y-2 \int_{-\infty}^{e_{\tau}} y f(y) d y\right)+\int_{-\infty}^{e_{\tau}} y f(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& \tau\left\{2\left(\int_{-\infty}^{e_{\tau}} y f(y) d y-e_{\tau} \int_{-\infty}^{e_{\tau}} f(y) d y\right)+e_{\tau}-\mathrm{E}[Y]\right\} \\
= & \int_{-\infty}^{e_{\tau}} y f(y) d y-\int_{-\infty}^{e_{\tau}} e_{\tau} f(y) d y
\end{aligned}
$$

And finally

$$
\tau=\frac{\operatorname{LPM}_{e_{\tau}}(y)-e_{\tau} F\left(e_{\tau}\right)}{2\left\{\operatorname{LPM}_{e_{\tau}}(y)-e_{\tau} F\left(e_{\tau}\right)\right\}+e_{\tau}-\mathrm{E}[Y]}
$$

## Tail Event Risk

Figure 11: $\alpha \tau(\alpha)$ for $F_{\delta}$

## Standardization

$\square \widehat{\sigma}_{i}$ from $\operatorname{GARCH}(1,1)$

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} y_{i-1}+\varepsilon_{i} \\
\sigma_{i}^{2} & =\alpha_{0}+\alpha_{1} \varepsilon_{i-1}^{2}+\alpha_{2} \sigma_{i-1}^{2}
\end{aligned}
$$

$\square \widehat{q}_{0.5}$ is assumed time constant
$\square \widehat{Y}_{i}=\frac{r_{i}-\widehat{q}_{0.5}}{\widehat{\sigma}_{i}}$

## Rescaled Expected Shortfall



